3.1034 \(\int \frac{x}{\sqrt [4]{2-3 x^2} (4-3 x^2)} \, dx\)

Optimal. Leaf size=91 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{2}-\sqrt{2-3 x^2}}{2^{3/4} \sqrt [4]{2-3 x^2}}\right )}{3\ 2^{3/4}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{2-3 x^2}+\sqrt{2}}{2^{3/4} \sqrt [4]{2-3 x^2}}\right )}{3\ 2^{3/4}} \]

[Out]

ArcTan[(Sqrt[2] - Sqrt[2 - 3*x^2])/(2^(3/4)*(2 - 3*x^2)^(1/4))]/(3*2^(3/4)) + ArcTanh[(Sqrt[2] + Sqrt[2 - 3*x^
2])/(2^(3/4)*(2 - 3*x^2)^(1/4))]/(3*2^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.0134464, antiderivative size = 91, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.045, Rules used = {439} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{2}-\sqrt{2-3 x^2}}{2^{3/4} \sqrt [4]{2-3 x^2}}\right )}{3\ 2^{3/4}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{2-3 x^2}+\sqrt{2}}{2^{3/4} \sqrt [4]{2-3 x^2}}\right )}{3\ 2^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[x/((2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

ArcTan[(Sqrt[2] - Sqrt[2 - 3*x^2])/(2^(3/4)*(2 - 3*x^2)^(1/4))]/(3*2^(3/4)) + ArcTanh[(Sqrt[2] + Sqrt[2 - 3*x^
2])/(2^(3/4)*(2 - 3*x^2)^(1/4))]/(3*2^(3/4))

Rule 439

Int[(x_)/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> -Simp[ArcTan[(Rt[a, 4]^2 - Sqrt[a +
 b*x^2])/(Sqrt[2]*Rt[a, 4]*(a + b*x^2)^(1/4))]/(Sqrt[2]*Rt[a, 4]*d), x] - Simp[(1*ArcTanh[(Rt[a, 4]^2 + Sqrt[a
 + b*x^2])/(Sqrt[2]*Rt[a, 4]*(a + b*x^2)^(1/4))])/(Sqrt[2]*Rt[a, 4]*d), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*
c - 2*a*d, 0] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{x}{\sqrt [4]{2-3 x^2} \left (4-3 x^2\right )} \, dx &=\frac{\tan ^{-1}\left (\frac{\sqrt{2}-\sqrt{2-3 x^2}}{2^{3/4} \sqrt [4]{2-3 x^2}}\right )}{3\ 2^{3/4}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{2}+\sqrt{2-3 x^2}}{2^{3/4} \sqrt [4]{2-3 x^2}}\right )}{3\ 2^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0074835, size = 34, normalized size = 0.37 \[ -\frac{1}{9} \left (2-3 x^2\right )^{3/4} \, _2F_1\left (\frac{3}{4},1;\frac{7}{4};\frac{1}{2} \left (3 x^2-2\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x/((2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

-((2 - 3*x^2)^(3/4)*Hypergeometric2F1[3/4, 1, 7/4, (-2 + 3*x^2)/2])/9

________________________________________________________________________________________

Maple [F]  time = 0.039, size = 0, normalized size = 0. \begin{align*} \int{\frac{x}{-3\,{x}^{2}+4}{\frac{1}{\sqrt [4]{-3\,{x}^{2}+2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(-3*x^2+2)^(1/4)/(-3*x^2+4),x)

[Out]

int(x/(-3*x^2+2)^(1/4)/(-3*x^2+4),x)

________________________________________________________________________________________

Maxima [A]  time = 1.55128, size = 159, normalized size = 1.75 \begin{align*} -\frac{1}{6} \cdot 2^{\frac{1}{4}} \arctan \left (\frac{1}{2} \cdot 2^{\frac{1}{4}}{\left (2^{\frac{3}{4}} + 2 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right )}\right ) - \frac{1}{6} \cdot 2^{\frac{1}{4}} \arctan \left (-\frac{1}{2} \cdot 2^{\frac{1}{4}}{\left (2^{\frac{3}{4}} - 2 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right )}\right ) + \frac{1}{12} \cdot 2^{\frac{1}{4}} \log \left (2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + \sqrt{2} + \sqrt{-3 \, x^{2} + 2}\right ) - \frac{1}{12} \cdot 2^{\frac{1}{4}} \log \left (-2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + \sqrt{2} + \sqrt{-3 \, x^{2} + 2}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="maxima")

[Out]

-1/6*2^(1/4)*arctan(1/2*2^(1/4)*(2^(3/4) + 2*(-3*x^2 + 2)^(1/4))) - 1/6*2^(1/4)*arctan(-1/2*2^(1/4)*(2^(3/4) -
 2*(-3*x^2 + 2)^(1/4))) + 1/12*2^(1/4)*log(2^(3/4)*(-3*x^2 + 2)^(1/4) + sqrt(2) + sqrt(-3*x^2 + 2)) - 1/12*2^(
1/4)*log(-2^(3/4)*(-3*x^2 + 2)^(1/4) + sqrt(2) + sqrt(-3*x^2 + 2))

________________________________________________________________________________________

Fricas [B]  time = 1.37552, size = 574, normalized size = 6.31 \begin{align*} \frac{1}{3} \cdot 2^{\frac{1}{4}} \arctan \left (2^{\frac{1}{4}} \sqrt{2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + \sqrt{2} + \sqrt{-3 \, x^{2} + 2}} - 2^{\frac{1}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} - 1\right ) + \frac{1}{3} \cdot 2^{\frac{1}{4}} \arctan \left (\frac{1}{2} \cdot 2^{\frac{1}{4}} \sqrt{-4 \cdot 2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 4 \, \sqrt{2} + 4 \, \sqrt{-3 \, x^{2} + 2}} - 2^{\frac{1}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 1\right ) + \frac{1}{12} \cdot 2^{\frac{1}{4}} \log \left (4 \cdot 2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 4 \, \sqrt{2} + 4 \, \sqrt{-3 \, x^{2} + 2}\right ) - \frac{1}{12} \cdot 2^{\frac{1}{4}} \log \left (-4 \cdot 2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 4 \, \sqrt{2} + 4 \, \sqrt{-3 \, x^{2} + 2}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="fricas")

[Out]

1/3*2^(1/4)*arctan(2^(1/4)*sqrt(2^(3/4)*(-3*x^2 + 2)^(1/4) + sqrt(2) + sqrt(-3*x^2 + 2)) - 2^(1/4)*(-3*x^2 + 2
)^(1/4) - 1) + 1/3*2^(1/4)*arctan(1/2*2^(1/4)*sqrt(-4*2^(3/4)*(-3*x^2 + 2)^(1/4) + 4*sqrt(2) + 4*sqrt(-3*x^2 +
 2)) - 2^(1/4)*(-3*x^2 + 2)^(1/4) + 1) + 1/12*2^(1/4)*log(4*2^(3/4)*(-3*x^2 + 2)^(1/4) + 4*sqrt(2) + 4*sqrt(-3
*x^2 + 2)) - 1/12*2^(1/4)*log(-4*2^(3/4)*(-3*x^2 + 2)^(1/4) + 4*sqrt(2) + 4*sqrt(-3*x^2 + 2))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x}{3 x^{2} \sqrt [4]{2 - 3 x^{2}} - 4 \sqrt [4]{2 - 3 x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-3*x**2+2)**(1/4)/(-3*x**2+4),x)

[Out]

-Integral(x/(3*x**2*(2 - 3*x**2)**(1/4) - 4*(2 - 3*x**2)**(1/4)), x)

________________________________________________________________________________________

Giac [A]  time = 1.1499, size = 159, normalized size = 1.75 \begin{align*} -\frac{1}{6} \cdot 2^{\frac{1}{4}} \arctan \left (\frac{1}{2} \cdot 2^{\frac{1}{4}}{\left (2^{\frac{3}{4}} + 2 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right )}\right ) - \frac{1}{6} \cdot 2^{\frac{1}{4}} \arctan \left (-\frac{1}{2} \cdot 2^{\frac{1}{4}}{\left (2^{\frac{3}{4}} - 2 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right )}\right ) + \frac{1}{12} \cdot 2^{\frac{1}{4}} \log \left (2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + \sqrt{2} + \sqrt{-3 \, x^{2} + 2}\right ) - \frac{1}{12} \cdot 2^{\frac{1}{4}} \log \left (-2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + \sqrt{2} + \sqrt{-3 \, x^{2} + 2}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="giac")

[Out]

-1/6*2^(1/4)*arctan(1/2*2^(1/4)*(2^(3/4) + 2*(-3*x^2 + 2)^(1/4))) - 1/6*2^(1/4)*arctan(-1/2*2^(1/4)*(2^(3/4) -
 2*(-3*x^2 + 2)^(1/4))) + 1/12*2^(1/4)*log(2^(3/4)*(-3*x^2 + 2)^(1/4) + sqrt(2) + sqrt(-3*x^2 + 2)) - 1/12*2^(
1/4)*log(-2^(3/4)*(-3*x^2 + 2)^(1/4) + sqrt(2) + sqrt(-3*x^2 + 2))